2024届江西省名校高考仿真卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中既关于直线对称,又在区间上为增函数的是()A..B.C.D.2.若满足,且目标函数的最大值为2,则的最小值为()A.8B.4C.D.63.曲线在点处的切线方程为,则()A.B.C.4D.84.已知函数,若函数的所有零点依次记为,且,则()A.B.C.D.5.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A.B.C.D.6.“”是“函数的图象关于直线对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知集合,,若,则()A.或B.或C.或D.或8.二项式的展开式中,常数项为()A.B.80C.D.1609.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.10.已知角的终边经过点,则的值是C.1或D.或A.1或B.或11.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A.B.C.D.12.在中,已知,,,为线段上的一点,且,则的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足,则的最小值是______________.14.已知正方体棱长为2,点是上底面内一动点,若三棱锥的外接球表面积恰为,则此时点构成的图形面积为________.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.已知复数(为虚数单位),则的模为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.18.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;所成的角取最大值时,求二面角(2)当直线与平面的正弦值.(为参数),以坐标原点为极点,19.(12分)在直角坐标系中,曲线的参数方程为轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.20.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,21.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.22.(10分)如图,在直三棱柱中,,点分别为和的中点.(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.的余弦值.(Ⅱ)求二面角参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.2、A【解析】作出可行域,由,可得.当直线过可行域内的点...