2024届江西省景德镇一中高三第四次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数B.,a为任意非零实数C.a、b均为任意实数D.不存在满足条件的实数a,b2.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A.B.C.D.3.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A.B.C.D.24.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A.B.C.D.5.已知函数是定义在上的偶函数,且在上单调递增,则()A.B.C.D.6.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2B.C.D.(其中7.已知定义在上的奇函数满足:),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A.B.C.D.8.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A.B.C.D.9.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为()A.B.C.D.10.设,且,则()A.B.C.D.11.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有B.若是等比数列,则一定有C.若不是等差数列,则一定有D.若不是等比数列,则一定有12.设等差数列的前n项和为,若,则()A.B.C.7D.2二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数为________.14.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.15.在数列中,已知,则数列的的前项和为__________.16.若实数,满足不等式组,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.20.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.21.(12分)已知函数.(Ⅰ)当时,求函数在上的值域;(Ⅱ)若函数在上单调递减,求实数的取值范围.22.(10分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;两点,在轴上是否存在定点,使成立,说明理由.(2)动直线过点与交于参考答案一、选择题:本题共12小题,每小题5分...