2024届江西鹰潭市第一中学高考数学三模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前项和为,且,则()A.45B.42C.25D.362.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.3.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为()A.B.C.D.4.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8B.7C.6D.55.已知函数,则不等式的解集为()A.B.C.D.6.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1B.C.2D.7.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96B.84C.120D.3608.函数的部分图象大致是()A.B.C.D.9.已知,,,若,则正数可以为()A.4B.23C.8D.1710.已知命题,,则是()A.,B.,.C.,D.,.11.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A.B.C.D.12.下列不等式正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________.14.设满足约束条件且的最小值为7,则=_________.15.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________.16.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,内切球半径为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.18.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.19.(12分)已知函数()的图象在处的切线为(为自然对数的底数)的值;(1)求(2)若,且对任意恒成立,求的最大值.20.(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.21.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.22.(10分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.的一条直径,若椭圆经过,两点,求椭圆的方程.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D项和.【点睛】本题考查等差数列的性质,考查等差数列的前2、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.3、D【解析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,...