2024届河北省实验中学高三第三次测评数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,若,则()A.B.C.D.2.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.B.C.D.13.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列B.依次成等差数列C.依次成等差数列D.依次成等差数列4.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A.B.3C.D.5.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A.B.C.-D.-6.已知函数,当时,恒成立,则的取值范围为()A.B.C.D.7.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10B.32C.40D.808.设命题p:>1,n2>2n,则p为()A.B.C.D.9.在中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.集合,,则()A.B.C.D.11.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A.B.C.D.12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在中,,,,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为__________.14.正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是______.15.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.16.若为假,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.18.(12分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;所成角的正弦值;(Ⅱ)求直线与平面(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.,焦点为,直线交抛物线于两点,交抛物线的准线于点,如19.(12分)已知抛物线图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;的斜率分别是,当直线的纵截距为1时,有数列满足(2)点是原点,设直线,设数列的前n项和为,已知存在正整数使得,求m的值.20.(12分)选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集非空,求的取值范围.21.(12分)[选修4-4:极坐标与参数方程](是参数),以坐标原点为极点,轴的正半在直角坐标系中,曲线的参数方程为轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值22.(10分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.①求实数的取值范围...