2024届河北省遵化市堡子店中学高三下学期第五次调研考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,点D是线段BC上任意一点,,,则()A.B.-2C.D.22.在中,角所对的边分别为,已知,.当变化时,若存在最大值,D.则正数的取值范围为A.B.C.3.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A.B.C.D.4.下列函数中,在区间上单调递减的是()A.B.C.D.5.已知函数(),若函数有三个零点,则的取值范围是()A.B.C.D.6.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增B.函数的周期是C.函数的图象关于点对称D.函数在上最大值是17.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A.B.C.D.8.已知集合,,则的真子集个数为()A.1个B.2个C.3个D.4个9.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位10.已知平面向量,,,则实数x的值等于()A.6B.1C.D.11.若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.函数的定义域为,集合,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足且目标函数的最大值为7,最小值为1,则___________.14.在的展开式中,各项系数之和为,则展开式中的常数项为__________________.15.数列满足,则,_____.若存在n∈N使得成立,则实数λ的最小值为______,如果同时满足以下两个条件:16.对定义在上的函数(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.18.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.19.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.20.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.21.(12分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.(Ⅰ)证明:;与平面所成最大角的正切值.(Ⅱ)若为上的动点,求中...