2024届河北省邯郸市高中名校高三下学期第六次检测数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,=(1,),且在方向上的投影为,则等于()A.2B.1C.D.02.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了B.乙被录用了C.甲被录用了D.无法确定谁被录用了3.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.如图,在中,点M是边的中点,将沿着AM翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的()A.重心B.垂心C.内心D.外心成立.则为()5.已知命题:使A.均成立B.均成立C.使成立D.使成立6.定义在上的奇函数满足,若,,则A.B.0()D.27.已知三棱锥C.1且平面,其外接球体积为()A.B.C.D.8.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.D.②④其中所有正确结论的编号是()C.①④()A.①②④B.①③9.已知是虚数单位,若,则A.B.2C.D.310.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()B.7C.8D.9A.611.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A.B.C.D.12.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤B.少1斤C.多斤D.少斤二、填空题:本题共4小题,每小题5分,共20分。13.已知多项式满足,则_________,__________.14.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.15.抛物线的焦点到准线的距离为.16.展开式中项的系数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。中,已知平行于轴的动直线17.(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.的方程;(1)求曲线(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.18.(12分)在中,内角的边长分别为,且.(1)若,,求的值;(2)若,且的面积,求和的值.19.(12分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求MN的最小值以及此时M的直角坐标.20.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.21.(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆...