2024届河北省邯郸市魏县第五中学高考冲刺押题(最后一卷)数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A.B.C.D.2.设实数、满足约束条件,则的最小值为()A.2B.24C.16D.143.设,满足,则的取值范围是()A.B.C.D.4.已知双曲线的一条渐近线倾斜角为,则()A.3B.C.D.5.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A.B.C.D.6.如图所示程序框图,若判断框内为“”,则输出()A.2B.10C.34D.987.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7B.15C.31D.638.双曲线的离心率为,则其渐近线方程为A.B.C.D.9.设曲线在点处的切线方程为,则()A.110.若复数B.2C.3D.4A.第一象限11.已知三棱锥(是虚数单位),则复数在复平面内对应的点位于()B.第二象限C.第三象限D.第四象限中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1B.1C.3D.412.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则.14.设等比数列的前项和为,若,则数列的公比是.15.已知函数在点处的切线经过原点,函数的最小值为,则________.16.已知,则展开式中的系数为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.19.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.20.(12分)已知f(x)=x+3-x-2(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:21.(12分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.22.(10分)若正数满足,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.的最小正周期是,则函数,经过平移后得到函数【详解】解:函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.2、D【解析】做出满足条件的可行域,根据图形即可求解.【详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.3、C【解析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.4、D...