2024届河南广东联考高考数学一模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在上的值域为,则实数的取值范围为()A.B.C.D.2.已知向量,,若,则()A.B.C.-8D.83.已知角的终边经过点,则A.B.C.D.4.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A.B.C.D.5.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A.B.C.D.以上情况均有可能6.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A.B.C.D.7.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A.B.C.D.8.在平行六面体中,M为与的交点,若,,则与相等的向量是()A.B.C.D.9.函数在的图象大致为()A.B.C.D.10.曲线上任意一点处的切线斜率的最小值为()A.3B.2C.D.111.在等差数列中,若为前项和,,则的值是()A.156B.124C.136D.180)12.某几何体的三视图如右图所示,则该几何体的外接球表面积为(A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和为,,且,则__________.14.设满足约束条件,则的取值范围为__________.15.(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是____________cm.16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.18.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.19.(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.20.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.21.(12分)已知函数.(1)求的极值;(2)若,且,证明:.22.(10分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.(1)证明:;的余弦值.(2)若,求二面角参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.【详解】当时,又,,由在上的值域为解得:本题正确选项:【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.2、B【解析】先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.3、D【解析】因为角的终边经过点,所以,则,即.故选D.4、A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】,中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以...