2024届河南省许昌、平顶山两市高三考前热身数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足(其中为的共轭复数),则的值为()A.1B.2C.D.2.已知是虚数单位,若,,则实数()A.或B.-1或1C.1D.3.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A.B.C.D.4.设函数,若函数有三个零点,则()A.12B.11C.6D.3,则()5.已知等差数列的前项和为,且D.36A.45B.42C.256.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A.B.C.D.7.已知集合A={yy},B={xy=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,)B.(﹣∞,0)∪[,+∞)C.(0,)D.(﹣∞,0]∪[,+∞)8.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.已知函数,,且在上是单调函数,则下列说法正确的是()A.B.C.函数在上单调递减D.函数的图像关于点对称10.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A.B.C.D.11.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题12.已知,则“直线与直线垂直”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,则_________.14.设为数列的前项和,若,,且,,则________.15.已知复数(为虚数单位),则的模为____.16.在中,内角的对边分别是,若,,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.18.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台20.(12分)某景点上山共有阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率.21.(12分)在中,,,.求边上的高.①,②,③,这三个条件中任选一个,补充在上面问题中并作答.22.(10分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.2、B【解析】由题意得,,然后求解即可【详解】 ,∴.又 ,∴,∴.【点睛】本题考查复数的运算,属于基础题3、A【解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线...