2024届河南省通许县丽星高级中学高考仿真卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有()A.69人B.84人C.108人D.115人2.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A.B.C.D.3.已知函数(),若函数有三个零点,则的取值范围是()A.B.C.D.4.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或5.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件6.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A.B.C.D.7.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A.B.C.D.8.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60B.7月份的利润最大C.这12个月利润的中位数与众数均为30D.这一年的总利润超过400万元9.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A.B.C.D.10.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1B.2C.3D.411.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A.B.C.D.12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.14.若一组样本数据7,9,,8,10的平均数为9,则该组样本数据的方差为______.15.已知向量=(-4,3),=(6,m),且,则m=__________.16.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;中点,求的长.(2)设为18.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.19.(12分)已知,,分别是三个内角,,的对边,.(1)求;(2)若,,求,.20.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.21.(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.22.(10分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.参考答案一、选择题:本题共12小题,每小...