2024届河南省郑州市第五中学高考压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数满足,则复数等于()A.B.C.2D.-22.己知全集为实数集R,集合A={xx2+2x-8>0},B={xlog2x<1},则等于()A.[4,2]B.[4,2)C.(4,2)D.(0,2)3.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A.B.C.D.4.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A.B.C.D.5.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A.B.6.已知复数C.D.A.B.和复数,则为C.D.7.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2B.C.D.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A.B.C.D.以上都不对9.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A.B.C.D.10.“且”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件11.函数的图象与函数的图象的交点横坐标的和为()A.B.C.D.12.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A.B.C.D.,则________.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线方程为14.若关于的不等式在上恒成立,则的最大值为__________.15.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.16.设满足约束条件且的最小值为7,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角所对的边分别为向量,向量,且.的最大值.(1)求角的大小;(2)求18.(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.19.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.20.(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点.(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值.21.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,...