2024届浙江省温州十五校联合体高考数学全真模拟密押卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在菱形中,,,,分别为,的中点,则()A.B.C.5D.2.设全集U=R,集合,则()A.{x-1<x<4}B.{x-4<x<1}C.{x-1≤x≤4}D.{x-4≤x≤1}3.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1B.C.D.4.已知复数满足(是虚数单位),则=()A.B.C.D.5.集合中含有的元素个数为()A.4B.6C.8D.126.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A.B.C.D.7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A.B.C.D.8.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.9.设复数满足,则()A.1B.-1C.D.10.已知点上运动,则A.6,若点在曲线面积的最小值为()B.3C.D.11.若实数满足不等式组,则的最大值为()C.3A.B.D.212.已知中,,则()A.1B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.14.已知数列满足对任意,若,则数列的通项公式________.15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)16.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若FP=5,则点F到双曲线的渐近线的距离为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.18.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的极坐标方程;(2)设和交点的交点为,求的面积.19.(12分)已知函数,记的最小值为.(Ⅰ)解不等式;(Ⅱ)若正实数,满足,求证:.20.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.21.(12分)[选修45:不等式选讲]已知都是正实数,且,求证:.22.(10分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;所成角的正弦值.(2)若,求与平面参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.的方向为轴,的方向为轴,建立直角坐标系,【详解】设与交于点,以为原点,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.2、C【解析】解一元二...