2024届浙江省磐安县二中高考冲刺数学模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正项等比数列中的、是函数的极值点,则()A.B.1C.D.2,且在区间上是减函数,令2.已知定义在上的偶函数满足,则的大小关系为()A.B.,则与的夹角为()C.D.3.已知非零向量,满足,A.B.C.D.4.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米B.米C.米D.米5.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A.B.C.D.6.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则MN的最小值为()A.πB.πC.πD.2π7.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A.B.C.D.8.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A.B.C.D.9.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题10.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A.B.C.11.已知函数D.,,若对,且,使得,则实数的取值范围是()A.B.C.D.12.已知,,,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和为64,则展开式各项系数和为__________.14.已知等比数列的前项和为,,且,则__________.15.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.16.已知,,且,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.相交于18.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.19.(12分)已知直线与椭圆恰有一个公共点,与圆两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.20.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.21.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.22.(10分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.2、C【解析】可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上...