2024届湖南省醴陵二中、四中高三下第一次测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A.B.C.0D.2.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A.B.C.D.53.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A.B.C.D.4.由曲线围成的封闭图形的面积为()A.B.C.D.5.正项等比数列中的、是函数的极值点,则()A.B.1C.D.26.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6)B.(-6,2)C.(-4,3)D.(-3,4)7.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A.B.C.D.8.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、9.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题10.正三棱柱中,,是的中点,则异面直线与所成的角为()A.B.C.D.11.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是()A.B.C.D.12.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。地区200家13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将_________.实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则14.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.15.已知集合,则_______.16.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,,且,证明.18.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.19.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.20.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.的面积取最大值(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当时,求两直线MA,MB斜率的比值.21.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.中,已知平行于轴的动直线22.(10分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.的方程;(1)求曲线(2)若直线与曲线相切于点,过且垂直于的...