2024届辽宁省沈阳市和平区沈阳铁路实验中学高考数学一模试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()B.20l9C.2018D.2017A.20202.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()B.45°C.60°D.75°A.30°3.已知集合,,则A.B.C.D.4.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.140D.1205.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为()A.B.C.D.6.如果实数满足条件,那么的最大值为()A.B.C.D.7.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A.B.C.D.8.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限9.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1B.2C.3D.010.二项式的展开式中,常数项为()A.B.80C.D.16011.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.12.如图是一个算法流程图,则输出的结果是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为__________.14.函数的图象向右平移个单位后,与函数的图象重合,则_____.15.若变量,满足约束条件,则的最大值为__________.16.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.且a≠0,证明:函数有局部对称点;(1)若a,(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.18.(12分)已知,(其中).(1)求;(2)求证:当时,.19.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积..20.(12分)设函数(1)若,求实数的取值范围;(2)证明:,恒成立.21.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.22.(10分)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的极坐标方程;(2)点是曲线上的一点,试判断点与曲线的位置关系.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意计算,,,计算,,,得到答案.【详解】的前项和,若,是等差数列故,,,,故,当时,,,,,当时,,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.2、C【解析】如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.3、D【解析】因为,,所以,,故选D.小时的频率为4、C,故自习时间不少于小时【解析】试题分析:...