2024届黑龙江哈尔滨市第三中学高考数学考前最后一卷预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A.B.C.D.2.给出下列三个命题:”的否定;①“②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0B.1C.2D.33.已知复数z,则复数z的虚部为()A.B.C.iD.i4.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A.B.C.D.5.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分B.充要C.充分而不必要D.即不充分也不必要上,过点作曲线的两条切线,切点分别为6.已知曲线,动点在直线,则直线截圆所得弦长为()A.B.2C.4D.7.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4B.大于4C.小于4D.不确定是等腰直角三角形,,且8.如图示,三棱锥的底面,,则与面所成角的正弦值等于()A.B.C.D.9.已知的解集是()A.,则不等式D.B.C.10.已知函数满足,当时,,则()A.或B.或C.或D.或11.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A.B.C.D.12.方程在区间内的所有解之和等于()A.4B.6C.8D.10在线段二、填空题:本题共4小题,每小题5分,共20分。13.已知过点的直线与函数的图象交于、两点,点上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是三组,其人数之比为,现用分层抽样的方14.某部门全部员工参加一项社会公益活动,按年龄分为法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.15.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.16.设实数x,y满足,则点表示的区域面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.18.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.19.(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.20.(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.21.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.22.(10分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5...