上海嘉定区2024年高三第二次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,在复平面内对应的点为,则()A.B.C.D.2.设点,,不共线,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.设,,,则、、的大小关系为()A.B.C.D.4.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A.B.C.D.,且当时,5.已知函数满足当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A.B.C.D.6.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A.B.C.D.7.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A.B.C.D.8.复数().A.B.C.D.9.已知直线和平面,若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.不充分不必要10.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A.B.C.D.(为实数),则关于的不等式11.已知为定义在上的奇函数,若当时,的解集是()A.B.C.D.12.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。小方阵开展游戏,则来自同一队的战士13.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成既不在同一行,也不在同一列的概率为______.14.已知为正实数,且,则的最小值为____________.15.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.16.已知正实数满足,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.18.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.19.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.20.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;所成的角的正弦值.(2)求直线与平面21.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.22.(10分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;截去三棱锥(Ⅱ)求斜三棱柱后剩余部分的体积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设 ,∴,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.2、C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“...