上海嘉定区外国语学校2024年高三冲刺模拟数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若各项均为正数的等比数列满足,则公比()A.1B.2C.3D.42.中,如果,则的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形3.已知集合,则=A.B.C.D.4.已知复数是纯虚数,其中是实数,则等于()A.B.C.D.5.“是函数在区间内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.函数满足对任意都有成立,且函数的图象关于点对称,,则B.2的值为()D.1A.0C.47.已知双曲线心率为()的一条渐近线经过圆的圆心,则双曲线的离A.B.C.D.28.函数()的图象的大致形状是()A.B.C.D.9.已知,,,若,则()A.B.C.D.10.执行如图所示的程序框图,输出的结果为()A.B.C.D.11.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A.B.C.D.12.若复数满足,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和且,设,则的值等于_______________.14.如图,已知圆内接四边形ABCD,其中,,,,则__________.15.已知,则的值为______.16.如图,在中,,,,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.18.(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面积的最大值.19.(12分)在四棱锥的底面中,,,平面,是的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.20.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.21.(12分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.22.(10分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;的体积;(2)(文科)求三棱锥的正切值.(理科)求二面角参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.2、B【解析】化简得lgcosA=lg=﹣lg2,即,结合,可求,得代入sinC=sinB,从,而可求C,B,进而可判断.,可得lgcosA==﹣lg2,∴【详解】由 ,∴,,∴sinC=sinB==,∴tanC=,C=,B=.故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.3、C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.4、A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中...