上海市上南中学2024年高三最后一卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()A.B.C.D.2.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A.B.C.D.3.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是B.是奇函数C.是周期函数D.是增函数4.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3B.C.4D.5.已知等比数列满足,,则()A.B.C.D.6.已知为虚数单位,若复数,则A.B.C.7.已知为抛物线D.的焦点,点在上,若直线与的另一个交点为,则()A.B.C.D.8.设i为数单位,为z的共轭复数,若,则()A.B.C.D.9.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170B.10C.172D.1210.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③B.①③④C.①②④D.②③④11.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.12.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如果函数(,且,)在区间上单调递减,那么的最大值为__________.14.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.15.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________.16.函数在内有两个零点,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.(1)求椭圆的标准方程;(2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值.18.(12分)已知等差数列的公差,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)已知,设函数(I)若,求的单调区间:(II)当时,的最小值为0,求的最大值.注:…为自然对数的底数.20.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.21.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.22.(10分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,...