上海市复旦中学2023-2024学年高三压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A.B.C.D.2.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①②B.①③C.②③D.①②③的图象有一个横坐标为的交点,若函数3.已知函数与的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A.B.C.D.,则下述结论:①4.在棱长均相等的正三棱柱中,为的中点,在上,且;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1B.2C.3D.45.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29B.30C.31D.326.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.7.已知复数满足:,则的共轭复数为()A.B.C.D.8.设集合,集合,则=()A.B.C.D.R9.已知函数,若则()A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b)D.f(c)<f(b)<f(a)10.若的内角满足,则的值为()C.D.A.B.11.若、满足约束条件,则的最大值为()A.B.C.D.12.设命题p:>1,n2>2n,则p为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.14.(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于____________.15.已知等差数列满足,,则的值为________.16.的展开式中的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.是等腰梯形,,点为的中点,以为边18.(12分)如图,底面作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值.19.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.20.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.21.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.22.(10分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;的面积.(2)若直线与曲线交于,两点,求参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:可判断;【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.2、D【解析】对于①,利用抛物线的定义,利用对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理...