上海师范大学附属中学2023-2024学年高三最后一卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若则实数的取值范围是()A.B.C.D.2.曲线在点处的切线方程为,则()A.B.C.4D.83.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.EB.FC.GD.H,则的值为()4.设等比数列的前项和为,若A.B.C.D.)的一个零点是,函数5.已知函数(,图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.()B.()C.()D.()6.已知,函数在区间内没有最值,给出下列四个结论:①在上单调递增;②③在上没有零点;④在上只有一个零点.其中所有正确结论的编号是()A.②④B.①③C.②③D.①②④,则7.已知集合,A.B.C.D.8.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A.B.C.D.9.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A.B.C.D.10.设,则()A.B.C.D.11.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A.B.C.D.12.已知随机变量服从正态分布,,()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,常数项为________.(用数字作答)14.函数的值域为_________.15.已知数列满足对任意,若,则数列的通项公式________.16.已知中,点是边的中点,的面积为,则线段的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.18.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.,.19.(12分)已知函数(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.20.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)21.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.22.(10分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据求解,,则的解集包含有解,【详解】因为,所以即有解,所以,得,,所以,又因为,,所以,即,可化为,因为所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,2、B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.3、C【解析】由于在复平面内点...