乐成公立寄宿学校2023-2024学年高考仿真模拟数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图象如图所示,则的单调递增区间为()A.B.C.D.2.等比数列若则()A.±6B.6C.-6D.3.展开项中的常数项为A.1B.11C.-19D.514.若函数有且只有4个不同的零点,则实数的取值范围是()A.B.C.D.5.设,则()A.10B.11C.12D.13,当时,的取值范围为6.已知函数,则实数m的取值范围是()A.B.C.D.7.设为等差数列的前项和,若,,则的最小值为()D.A.B.C.8.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A.B.C.”的否定是“D.以上情况均有可能9.已知下列命题:”;①“②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④B.①②C.①③D.②④10.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.4C.D.511.已知数列满足:)若正整数使得成立,则()C.18D.19A.16B.1712.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.14.设为等比数列的前项和,若,且,,成等差数列,则.15.内角,,的对边分别为,,,若,则__________.16.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.18.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.19.(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.20.(12分)已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.21.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.22.(10分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:56784的近似值5514840310972981参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由图象可以求出周期,得到,根据图象过点可求,...