乐成公立寄宿学校2024年高考数学一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合.为自然数集,则下列表示不正确的是()A.B.C.D.2.复数B.﹣2i为纯虚数,则()D.﹣iA.iC.2i3.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A.B.C.D.4.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有()种.A.408B.120C.156D.2405.正项等差数列的前和为,已知,则=()A.35B.36C.45D.546.若均为任意实数,且,则的最小值为()A.B.C.D.7.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A.B.C.D.8.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A.B.C.D.9.在A.中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()B.C.D.10.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6B.8C.10D.1211.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A.B.C.D.12.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知若存在,使得成立的最大正整数为6,则的取值范围为________.14.(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是____________.15.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.16.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线,A为BE的方程.18.(12分)如图1,已知四边形BCDE为直角梯形,,,且的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.19.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.20.(12分)中的内角,,的对边分别是,,,若,.(1)求;(2)若,点为边上一点,且,求的面积.21.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小...