云南省师范大学附属中学2023-2024学年高考适应性考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的展开式中的常数项为8,则实数()A.2B.-2C.-3D.32.复数满足,则()A.B.C.D.3.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变4.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A.B.C.D.5.设,,,则、、的大小关系为()A.B.C.D.6.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A.B.C.D.7.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.B.C.1D.28.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134B.67C.182D.10810.设函数,若函数有三个零点,则()A.12B.11C.6D.311.设,,分别是中,,所对边的边长,则直线与A.平行的位置关系是()C.垂直B.重合D.相交但不垂直12.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A.B.C.D..则不等式二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为上的奇函数,满足的解集为________.中,为定长,,若的面积的最大值为,则边的长为__________14.在__.15.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________.,为虚数单位,且,则=_____.16.已知三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.19.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;的分布列和(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量数学期望.20.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.21.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,...