电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷含解析.doc

云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷含解析.doc_第1页
1/22
云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷含解析.doc_第2页
2/22
云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷含解析.doc_第3页
3/22
云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量与的夹角为,,,则()A.B.0C.0或D.2.已知集合A={﹣2,﹣1,0,1,2},B={xx2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2}3.已知为定义在上的奇函数,且满足当时,,则()A.B.C.D.4.已知实数、满足不等式组,则的最大值为()A.B.C.D.5.执行下面的程序框图,如果输入,,则计算机输出的数是()A.B.C.D.6.下列函数中,既是偶函数又在区间上单调递增的是()A.B.C.D.7.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A.B.C.D.8.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A.B.C.D.9.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A.B.C.D.10.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A.B.C.D.11.已知等差数列的前n项和为,且,则()A.4B.8C.16D.212.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则B.若,则C.若,则D.若,则平行,则为________.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在处的切线与直线14.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.15.若双曲线的离心率为,则双曲线的渐近线方程为______.16.在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.18.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,①若点为椭圆的上顶点,原点为的垂心,求线段的长;②若原点为的重心,求原点到直线距离的最小值.19.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.20.(12分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.21.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.22.(10分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.2、D【解析】解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.3、C【解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.,则函数的周期是,【...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

云南省昭通市昭阳区建飞中学2023-2024学年高三(最后冲刺)数学试卷含解析.doc

您可能关注的文档

确认删除?