云南省泸水五中2023-2024学年高三第六次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则()A.B.C.D.2.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6}B.{1,5,6}C.{2,3,4}D.{1,2,3,5,6}3.已知非零向量,满足,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:4.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147B.294C.882D.17645.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A.B.C.D.6.函数的大致图象为()A.B.C.D.7.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.函数()的图象的大致形状是()A.B.C.D.9.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()D.A.B.C.10.执行如图所示的程序框图,输出的结果为()A.B.C.D.11.如图所示的程序框图,若输入,,则输出的结果是()A.B.C.D.12.已知集合,则=A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,那么______.14.设复数满足,则_________.15.已知集合,,则__________.16.设复数满足,其中是虚数单位,若是的共轭复数,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.19.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.20.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数似为这人得分的平均值(同一组中的数(1)由频数分布表可以大致认为,此次问卷调查的得分据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,21.(12分)在三棱锥,为棱的中中,点,(I)证明:;(II)求直线与平面所成角的正弦值.22.(10分)已知矩阵,求矩阵的特征值及其相应的特征向量.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别解出集合然后求并集.【详解】解:,故选:D【点睛】考查集合的并集运算,基础题.2、B【解析】按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.3、C【解析】根据向量的数量积运算,由向量的关系,可得选项.,【详解】,∴等价...