云南省耿马县民族中学2024年高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中是自然对数的底数)的大致图像为()A.B.C.D.2.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根3.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A.B.C.D.4.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A.B.C.D.5.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0B.1C.2D.36.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.B.必要不充分C.充要D.既不充分也不必要A.充分不必要7.已知集合A,则集合()A.B.C.D.8.若的二项式展开式中二项式系数的和为32,则正整数的值为()A.7B.6C.5D.4,从中随机取一件,其长度误差落在区间(3,6)9.已知某批零件的长度误差(单位:毫米)服从正态分布,内的概率为()(附:若随机变量ξ服从正态分布,则.)A.4.56%B.13.59%C.27.18%D.31.74%10.已知随机变量服从正态分布,,()A.B.C.D.11.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A.B.C.D.12.函数的值域为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和为64,则展开式各项系数和为__________.14.设为椭圆在第一象限上的点,则的最小值为________.15.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.16.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.18.(12分)已知,.(1)解;(2)若,证明:.19.(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.(为参数),将曲线上每一点的横20.(12分)在平面直角坐标系中,曲线的参数方程为坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值.21.(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.22.(10分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.的解析式,结合正弦函数的图象与性质即2、C【解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足...