云南省西盟县第一中学2023-2024学年高考仿真卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足:)若正整数使得成立,则()A.16B.17C.18D.192.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4πB.8πC.D.3.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A.B.C.D.4.若函数的图象如图所示,则的解析式可能是()A.B.C.D.5.设,满足,则的取值范围是()A.B.C.D.6.复数,是虚数单位,则下列结论正确的是A.B.的共轭复数为D.在复平面内的对应点位于第一象限C.的实部与虚部之和为1,则,,的大小关系为()7.已知,,A.B.C.D.8.已知,,则等于().A.B.C.D.9.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A.B.C.D.10.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A.B.C.D.11.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A.B.C.D.12.设集合则()D.A.B.C.,则不等式二、填空题:本题共4小题,每小题5分,共20分。13.已知函数函数的解集为____.14.四边形中,,,,,则的最小值是______.15.若幂函数的图象经过点,则其单调递减区间为_______.16.将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值.为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.18.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.19.(12分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.20.(12分)如图,在四棱锥中,底面为菱形,底面,(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.21.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.22.(10分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.2、B【解析】由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.3、D【解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.4、A【解析】由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查...