内蒙古阿左旗高级中学2023-2024学年高三(最后冲刺)数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则()A.B.C.D.2.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21B.﹣24C.85D.﹣853.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30B.C.D.624.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3B.4C.5D.65.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A.B.C.D.6.已知i是虚数单位,则()A.B.C.D.7.若复数z满足,则()A.B.C.D.8.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3B.4C.5D.69.已知函数,则在上不单调的一个充分不必要条件可以是()A.B.C.或D.10.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A.B.C.3D.511.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A.B.C.D.12.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48B.36C.24D.12的最大值为______.二、填空题:本题共4小题,每小题5分,共20分。13.设,满足约束条件,则14.已知,,则与的夹角为.15.已知函数,若的最小值为,则实数的取值范围是_________16.的展开式中所有项的系数和为______,常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.18.(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.19.(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.21.(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束...