北京市101中学2023-2024学年高考压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则方程的实数根的个数是()A.B.C.D.2.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A.B.C.2D.﹣23.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A.B.1C.D.4.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种B.144种C.288种D.360种5.已知的部分图象如图所示,则的表达式是()A.B.C.D.6.已知函数满足,设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A.B.D.C.,则数列的通项公式为()8.已知数列满足,且A.B.C.D.9.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()D.①②A.③④B.①③C.②③10.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A.B.C.D.11.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10B.9C.8D.712.设复数z=,则z=()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数z满足,其中i是虚数单位,则z的模是______.14.双曲线的焦距为__________,渐近线方程为________.15.在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:寿命(天)频数频率40600.30.4200.11合计200个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,某人从灯泡样品中随机地购买了则的最小值为______.16.已知实数,满足约束条件,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.18.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;的斜率分别为,求证:(2)设椭圆的右顶点为,线段的中点为,记直线为定值.19.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,,点分别为求出的值;若不存在,说明理由.20.(12分)如图所示,在四棱锥中,∥,的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.21.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22.(10分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】画出函数令有两解,则分别有3个,2个解,故方程故选:D的实数根的个数是3+2=5个【点睛】本题综合考查了函数的图象的运用,分类...