北京市19中2023-2024学年高三冲刺模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段B.与BE是异面直线C.与不可能平行D.三棱锥的体积为定值2.函数的图象如图所示,则它的解析式可能是()A.,B.,,则,,的大小关系为()C.B.D.3.已知函数,D.A.C.4.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A.B.C.D.5.已知实数,则下列说法正确的是()A.B.C.D.6.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2B.3C.3.5D.47.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3B.C.D.8.已知函数,.若存在,使得成立,则的最大值为()A.B.C.D.9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.()B.()C.()D.()10.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与D.的性质的描述正所成角的余弦值为()A.B.C.11.已知向量,,设函数,则下列关于函数确的是对称B.关于点对称A.关于直线C.周期为D.在上是增函数12.下列不等式正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.14.执行以下语句后,打印纸上打印出的结果应是:_____.15.若,则______.16.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.18.(12分)设为实数,已知函数,.(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围.19.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.20.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.21.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.22.(10分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所...