北京市密云区2024届高三第一次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A.B.C.D.2.已知角的终边经过点,则A.B.C.D.3.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥αB.α⊥β且⊥βC.α与β相交,且交线垂直于D.α与β相交,且交线平行于4.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A.B.C.D.5.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4B.3C.2D.1与抛物线交于不同两点,,直线6.已知抛物线和点,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③7.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分不必要条件8.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.9.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A.B.C.D.10.已知,,,,.若实数,满足不等式组,则目标函数()A.有最大值,无最小值B.有最大值,有最小值C.无最大值,有最小值D.无最大值,无最小值11.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A.B.C.D.12.已知函数,若函数的所有零点依次记为,且,当,则()A.B.C.D.没有零点,且二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域R上的导函数为,若函数在上与在R上的单调性相同时,则实数k的取值范围是______.14.已知平面向量,,且,则向量与的夹角的大小为________.15.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.16.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.18.(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.19.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.20.(12分)已知函数,设为的导数,.分别是(1)求,;(2)猜想的表达式,并证明你的结论.21.(12分)如图,平面上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面平面所成的二面角的余弦值.时,求平面与22.(10分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数(3)求函数的极小值;的零点个数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别判断命...