北京市师范大学附属中学2023-2024学年高考全国统考预测密卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量满足,且与的夹角为,则()A.B.C.D.2.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()B.椭圆,但要去掉两个点A.圆,但要去掉两个点D.抛物线,但要去掉两个点C.双曲线,但要去掉两个点3.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A.B.C.D.4.在中,是的中点,,点在上且满足,则等于()A.B.C.D.5.已知函数,则()A.2B.3C.4D.5().6.已知复数满足,其中为虚数单位,则A.B.C.D.()7.在中,为中点,且,若,则A.B.C.D.8.已知集合M={x﹣1<x<2},N={xx(x+3)≤0},则M∩N=()A.[﹣3,2)B.(﹣3,2)C.(﹣1,0]D.(﹣1,0)9.若函数()的图象过点,则()A.函数的值域是B.点是的一个对称中心C.函数的最小正周期是D.直线是的一条对称轴10.已知,则下列关系正确的是()A.B.C.D.11.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20B.30C.50D.6012.已知,若则实数的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.14.已知函数是定义在上的奇函数,则的值为__________.,若函数有6个零点,则实数的取值范15.已知函数围是_________.的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为16.已知椭圆,此时椭圆的方程是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.18.(12分)已知数列,其前项和为,若对于任意,,且,都有.,且等差数列的公差为,存在正整数,使得,(1)求证:数列是等差数列(2)若数列满足求的最小值.19.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.20.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.(Ⅰ)求的极坐标方程和曲线的参数方程;(Ⅱ)求曲线的内接矩形的周长的最大值.22.(10分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.2、A【解析】根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.3、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.4、B【解析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解: M是BC的中点...