北京市房山区房山实验中学2023-2024学年高考数学必刷试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量,满足,且,则与的夹角为()A.B.C.D.2.函数,则A.的定义域为,集合()D.B.C.3.函数图像可能是()A.B.C.D.与函数的图象上一点,则线段的最小值为()4.已知与分别为函数A.B.C.D.65.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A.B.C.D.6.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6B.5C.4D.37.已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为()A.9B.10C.18D.208.设等差数列的前项和为,若()A.21,,则9.集合B.22D.12,C.11(),则A.B.C.D.10.已知复数是正实数,则实数的值为()A.B.C.D.11.已知实数满足不等式组,则的最小值为()A.B.C.D.12.函数的大致图象为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,,是边的垂直平分线上的一点,则__________.14.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.15.若,则__________.16.已知函数在上仅有2个零点,设,则在区间上的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.18.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;列联表补充完整,并判断能否在犯(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.20.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.21.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.22.(10分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要...