北京市朝阳区力迈国际学校2023-2024学年高三六校第一次联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A.,B.存在点,使得平面平面C.平面D.三棱锥的体积为定值2.已知等差数列的前项和为,且,则()A.45B.42C.25D.363.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A.B.C.D.4.已知数列的前项和为,且,,,则的通项公式()A.B.C.D.5.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A.B.C.D.6.()A.B.C.1D.7.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A.B.C.D.8.在平行四边形中,若则()A.B.C.D.9.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍B.倍C.倍D.倍10.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()D.A.B.C.11.已知全集,集合,则()A.B.C.D.12.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A.B.C.3D.5二、填空题:本题共4小题,每小题5分,共20分。13.复数为虚数单位)的虚部为__________.14.从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的概率为_______.15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________16.已知平面向量,,满足=1,=2,,的夹角等于,且()•()=0,则的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:18.(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.19.(12分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.20.(12分)已知函数,.(1)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;(2)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;(3)求证:(参考数据:ln1.1≈0.0953).21.(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.22.(10分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】分别是中点,所以,故A正确;在A中,因为在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错...