北京市海淀区人大附中2023-2024学年高三下第一次测试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中各项系数的和为2,则该展开式中常数项为A.-40B.-20C.20D.402.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A.B.C.D.3.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A.B.C.D.4.设是虚数单位,若复数,则()A.B.C.D.5.如图是一个几何体的三视图,则这个几何体的体积为()A.B.C.D.6.设为非零向量,则“”是“与共线”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.“是函数在区间内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知函数,,且在上是单调函数,则下列说法正确的是()A.B.C.函数在上单调递减D.函数的图像关于点对称9.为得到的图象,只需要将的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位10.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1B.2C.3D.411.已知函数,则的值等于()A.2018B.1009C.1010D.202012.若函数满足,且,则的最小值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____.14.已知两个单位向量满足,则向量与的夹角为_____________.15.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.16.已知数列与均为等差数列(),且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.18.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.19.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.20.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且.(1)求的方程;两点,直线的斜率都存(2)已知点是上的任意一点,不经过原点的直线与交于在,且,求的值.分别是椭圆21.(12分)设点的左,右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.22.(10分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.参考答案一、选择题:本题共12小题,每小题...