北京市衡中清大教育集团2024年高考数学三模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72B.64C.48D.322.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A.B.C.D.3.在三角形中,,,求()A.B.C.D.4.已知函数,若,A.,,则a,b,c的大小关系是()5.若集合B.C.,D.,则=()A.B.C.D.6.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥nB.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥βD.若α//β,lβ,且l//α,则l//β7.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A.B.C.D.8.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形9.已知数列是公差为的等差数列,且成等比数列,则()A.4B.3C.2D.1,则的值是()10.已知等比数列的前项和为,且满足D.A.B.C..则这个数列的前7项和等于()11.设数列是等差数列,,A.12B.21C.24D.3612.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中含的系数为__________.(用数字填写答案)14.正项等比数列满足,且成等差数列,则取得最小值时的值为_____15.的展开式中,常数项为______;系数最大的项是______.16.内角,,的对边分别为,,,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,AF=1,M是线段EF17.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.18.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:(为参数),以原点为极点,轴(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.19.(12分)平面直角坐标系中,曲线的参数方程为的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.20.(12分)如图中,为的中点,,,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.,为坐标原点.21.(12分)已知圆:和抛物线:(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.22.(10分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合...