北京市首都师大附属回龙观育新学校2024届高三下学期联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,满足约束条件,若的最大值为,则的展开式中项的系数为()B.80C.90D.120A.60的最小值为()2.已知向量,满足,在上投影为,则A.B.C.D.3.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①②B.①③C.①③④D.①②④4.已知双曲线,则()()的渐近线方程为A.B.C.D.5.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A.B.C.D.6.设全集,集合,,则()A.B.C.D.7.已知(),i为虚数单位,则()A.B.3C.1D.58.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.EB.FC.GD.H9.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分B.充要C.充分而不必要D.即不充分也不必要10.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A.11.若函数B.C.D.A.在时取得极值,则()B.C.D.12.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A.B.C.2或D.2或二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若向量与向量平行,则实数___________.14.,则f(f(2))的值为____________.15.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.16.在的展开式中,项的系数是__________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)已知函数,曲线在点处的切线方程为求a,b的值;证明:.20.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.21.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.22.(10分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从市到市乘坐高铁或飞机出行的成年人约为万人次.为了解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐高铁乘坐高铁乘坐飞机乘坐飞机乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲...