北师大学附中2024届高三第四次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,若AB,则实数的取值范围是()A.B.C.D.2.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A.B.C.D.3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A.B.C.D.4.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3B.C.6D.5.已知函数,则()A.B.C.D.6.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为().A.B.C.D.7.函数的图象在点处的切线为,则在轴上的截距为()A.B.8.已知集合C.D.,,,则集合()A.B.C.D.9.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A.B.C.D.10.函数的图象可能是下面的图象()A.B.C.D.11.已知集合,集合,则等于()A.B.C.D.12.椭圆的焦点为,点在椭圆上,若,则的大小为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.14.设全集,,,则______.15.已知函数,若方程的解为,(),则_______;_______.16.已知两点,,若直线上存在点满足,则实数满足的取值范围.是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知平面与直线均垂直于所在平面,且(1)求证:平面;(2)若,求与平面所成角的正弦值.18.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.19.(12分)已知向量,.(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.20.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.21.(12分)已知正实数满足.(1)求的最小值.(2)证明:22.(10分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2、D【解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.3、C【解析】令圆的半径为1,则,故选C.4、A【解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.故选:A【点睛】本题考查双曲线渐近线方程,以及5、A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选...