吉林省五地六市联盟2024届高三下学期第五次调研考试数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像2.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.3.若执行如图所示的程序框图,则输出的值是()A.B.C.D.44.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A.B.C.D.5.已知,则的大小关系是()A.B.C.D.,6.已知数列的前项和为,且,则()A.B.C.D.7.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()D.A.B.C.8.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点MD.4的纵坐标为1,则p=()A.1B.C.29.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A.B.C.D.10.在中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10B.32C.40D.8012.若时,,则的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______14.下图是一个算法的流程图,则输出的x的值为_______.15.已知实数,且由的最大值是_________16.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数有两个极值点,求证:.18.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.(1)证明:BD⊥EG;(2)若三棱锥,求菱形ABCD的边长.19.(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.20.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.21.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.22.(10分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.2、C【解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4...