吉林省白城十四中2024年高三二诊模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A.B.C.5D.63.已知复数满足,且,则()A.3B.C.D.4.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象5.两圆和相外切,且,则的最大值为()A.B.9C.D.16.的展开式中,满足的的系数之和为()D.A.B.C.内的动点,且与平面7.在正方体中,E是棱的中点,F是侧面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段B.与BE是异面直线C.与不可能平行D.三棱锥的体积为定值8.△ABC的内角A,B,C的对边分别为,已知,则为()A.B.C.或D.或9.己知全集为实数集R,集合A={xx2+2x-8>0},B={xlog2x<1},则等于()A.[4,2]B.[4,2)C.(4,2)D.(0,2)10.函数在内有且只有一个零点,则a的值为()A.3B.-3C.2D.-211.抛物线的准线方程是,则实数()A.B.C.D.12.若实数满足的约束条件,则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为______.14.已知函数对于都有,且周期为2,当时,,则________________________.15.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.16.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.18.(12分)设函数,其中.(Ⅰ)当为偶函数时,求函数的极值;(Ⅱ)若函数在区间上有两个零点,求的取值范围.19.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.20.(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:21.(12分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.22.(10分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同...