吉林省舒兰市第一高级中学2023-2024学年高三最后一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数B.在上是增函数C.不是函数的最小值D.对于,都有2.要得到函数的图像,只需把函数的图像()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位3.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或B.C.或D.4.已知点(m,8)在幂函数的图象上,设,则()A.b<a<cB.a<b<cC.b<c<aD.a<c<b5.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A.B.1C.D.26.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直B.三棱锥P-ABC的体积为C.D.三棱锥P-ABC的侧面积为7.已知集合,则的值域为()A.B.C.D.8.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A.B.C.D.9.复数满足为虚数单位),则的虚部为()A.10.设双曲线B.C.D.(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为()A.B.C.D.11.已知是函数的极大值点,则的取值范围是A.B.C.D.12.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.15.设复数满足,其中是虚数单位,若是的共轭复数,则____________.16.下图是一个算法流程图,则输出的的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,且.平面ABC.(1)求;(2)若的面积为,,求的周长.18.(12分)如图,在三棱柱中,(1)证明:平面平面(2)求二面角的余弦值.19.(12分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.20.(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.21.(12分)已知函数,,若存在实数使成立,求实数的取值范围.22.(10分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质...