吉林省长春市汽车经济技术开发区第六中学2023-2024学年高考压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A.B.C.D.2.若,则下列不等式不能成立的是()A.B.C.D.3.已知是的共轭复数,则()A.B.C.D.4.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或5.在的展开式中,含的项的系数是()A.74B.121C.D.6.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元B.7000元C.7500元D.8000元7.设,则C.D.A.B.8.下列函数中,既是奇函数,又在上是增函数的是().A.B.C.D.9.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A.B.C.D.10.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A.B.C.D.11.方程在区间内的所有解之和等于()A.4B.6C.8D.1012.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数为,则_______.14.的展开式中项的系数为_______.15.设定义域为的函数满足,则不等式的解集为__________.16.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。的极坐标方程是17.(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.18.(12分)已知,,为正数,且,证明:(1);(2).19.(12分)已知函数,使得,求证:(1)求单调区间和极值;(2)若存在实数20.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.21.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求a,d的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为X,求X的分布列及数学期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63522.(10分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给...