四川省凉山木里中学2024年高三第二次诊断性检测数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.2.已知函数为奇函数,且,则()A.2D.3B.5C.13.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A.B.C.D.4.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.5.已知集合,集合,那么等于()A.B.C.D.6.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A.B.C.D.7.已知向量,,则向量在向量上的投影是()A.B.C.D.8.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A.B.中随机选取一个数记为,则在方C.D.9.从集合中随机选取一个数记为,从集合程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A.B.C.D.10.已知点在双曲线上,则该双曲线的离心率为()A.B.C.D.11.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A.B.C.D.12.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A.B.C.D.恒成立,则的最大值为_____.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.对于任意的正数,不等式15.已知向量=(-4,3),=(6,m),且,则m=__________.16.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.18.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.20.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.21.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.22.(10分)在ABC中,角A,B,C的对边分别为a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.2、B【解析】由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.3、D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形...