四川省南充市白塔中学2023-2024学年高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲B.乙C.丙D.丁2.已知正项数列满足:,设,当最小时,的值为()A.B.C.D.3.设是等差数列的前n项和,且,则()A.B.C.1D.24.设为自然对数的底数,函数,若,则()A.B.C.D.5.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且B.,且C.,且D.,且6.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A.B.C.D.27.在三角形中,,,求()A.B.C.D.8.已知为等比数列,,,则()A.9B.-9C.D.9.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.11.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A.B.40C.16D.12.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020B.4038C.4039D.4040二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.14.记为数列的前项和,若,则__________.15.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.16.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.是棱长为2的正方形,侧面为正三角形,且面18.(12分)如图所示,在四棱锥中,底面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.19.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.20.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.21.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.22.(10分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.参考答案一、选择题:...