四川省宜宾市2023-2024学年高考数学押题试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A.B.C.D.2.由曲线围成的封闭图形的面积为()A.B.C.D.3.已知复数,则的虚部是()A.B.C.D.14.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A.B.C.D.5.下列不等式成立的是()A.B.C.D.6.设i是虚数单位,若复数是纯虚数,则a的值为()A.B.3C.1D.7.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A.B.C.D.8.已知向量,,=(1,),且在方向上的投影为,则等于()A.2B.1C.D.09.已知为等腰直角三角形,,,为所在平面内一点,且,则()A.B.C.D.10.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A.B.C.D.11.设i是虚数单位,若复数()是纯虚数,则m的值为()A.B.C.1D.312.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A.B.C.D.________.二、填空题:本题共4小题,每小题5分,共20分。13.如图,直线是曲线在处的切线,则14.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.)•()=0,则的取15.已知平面向量,,满足=1,=2,,的夹角等于,且(值范围是_____.16.若变量,满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.18.(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.19.(12分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)20.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.21.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.22.(10分)已知,,为正数,且,证明:(1);(2).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.2、A【解析】先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.3、C【解析】化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查...