电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

四川省新津中学2023-2024学年高考数学五模试卷含解析.doc

四川省新津中学2023-2024学年高考数学五模试卷含解析.doc_第1页
1/20
四川省新津中学2023-2024学年高考数学五模试卷含解析.doc_第2页
2/20
四川省新津中学2023-2024学年高考数学五模试卷含解析.doc_第3页
3/20
四川省新津中学2023-2024学年高考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中,,)的图象如图,则此函数表达式为()A.B.C.D.2.若复数满足,则()A.B.C.D.3.己知集合,,则()A.B.C.D.4.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A.B.C.D.5.已知数列满足,且,则的值是()A.B.C.4D.6.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()或A.2或B.2或C.或D.7.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30B.C.D.628.若时,,则的取值范围为()A.B.C.D.9.已知条件,条件直线与直线平行,则是的()A.充要条件10.已知全集B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件,则集合的子集个数为()A.B.C.D.11.已知函数,,若存在实数,使成立,则正数的取值范围为()A.B.C.D.12.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①②B.①③C.②③D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.15.在的展开式中,项的系数是__________(用数字作答).16.已知平面向量,,满足=1,=2,,的夹角等于,且()•()=0,则的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.18.(12分)已知,.(1)解;.(2)若,证明:19.(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.21.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.2、C【解析】化简得到,,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.3、C【解析】先化简,再求.【详解】因为,又因为,所以,故选...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

四川省新津中学2023-2024学年高考数学五模试卷含解析.doc

您可能关注的文档

确认删除?