四川省邻水实验中学2024届高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为锐角,若,则的值为()A.B.C.D.2.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A.B.C.D.3.“”是“函数的图象关于直线对称”的()A.充分不必要条件在双曲线B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知点上,则该双曲线的离心率为()A.B.C.D.5.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段6.已知双曲线PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.7.若x,y满足约束条件且的最大值为,则a的取值范围是()A.B.C.D.8.函数()的图象的大致形状是()A.B.C.D.9.已知命题:R,;命题:R,,则下列命题中为真命题的是()A.B.C.D.10.已知复数z满足,则z的虚部为()A.B.iC.–1D.111.设,其中a,b是实数,则()A.1B.2C.D.12.“”是“函数(为常数)为幂函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.14.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.15.在各项均为正数的等比数列中,,且,成等差数列,则___________.16.的展开式中,的系数是__________.(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.(Ⅰ)当为线段的中点时,求直线的方程;(Ⅱ)记的面积为,的面积为,求的最小值.18.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.19.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.20.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)21.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.22.(10分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】用诱导公式和二倍角公式计算.【详解】.故选:D.【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.2、D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,...