天津河北区2024年高三第二次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足:,则的共轭复数为()A.B.C.D.2.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A.B.C.D.3.已知的面积是,,,则()A.5B.或1C.5或1D.4.在中,角,,的对边分别为,,,若,,,则()A.B.3C.D.45.集合的真子集的个数是()A.B.C.D.6.设数列的各项均为正数,前项和为,,且,则()A.128B.65C.64D.637.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9B.0.85C.0.75D.0.58.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数B.在上是增函数C.不是函数的最小值D.对于,都有9.已知,函数在区间内没有最值,给出下列四个结论:①在上单调递增;②③在上没有零点;④在上只有一个零点.其中所有正确结论的编号是()A.②④B.①③C.②③D.①②④10.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A.B.C.D.11.执行如图所示的程序框图,输出的结果为()A.B.C.D.12.已知集合,则等于()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的最小值为2,则_________.14.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.15.设是公差不为0的等差数列的前n项和,且,则______.16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.18.(12分)已知,设函数(I)若,求的单调区间:(II)当时,的最小值为0,求的最大值.注:…为自然对数的底数.19.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.20.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.21.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.分别是椭圆的左,右焦点,为椭圆上任意一点,且22.(10分)设点的最小值为1.(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】转化,为,利用复数的除法化简,即得解【详解】复数满足:所以故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.2、B【解析】命题p:,为,又为真命题的充分不必要条件为,故3、B【解析】 ,,∴①若为钝角,则,由余弦定理得,解得;②若为锐角,则,同理得.故选B.4、B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。5、C【解析】根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C...