宁夏银川市实验中学2024年高三一诊考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个B.个C.个D.个2.“是函数在区间内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A.B.C.2D.4.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()D.1095A.1194B.1695C.311D.55.已知函数,则()A.2B.3C.46.已知命题:,,则为()A.,B.,C.,D.,7.已知集合,,则()A.B.C.D.8.已知函数,则不等式的解集为()A.B.C.D.9.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A.B.C.D.10.等比数列的各项均为正数,且,则()A.12B.10C.8D.11.已知函数,且),则“在上是单调函数”是“”的()B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A.充分不必要条件12.已知向量,,=(1,),且在方向上的投影为,则等于()A.2B.1C.D.0二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数是__________.(用数字填写答案)14.已知函数在上单调递增,则实数a值范围为_________.15.设等差数列的前项和为,若,,则数列的公差________,通项公式________.,其中α,β∈R,且α+β=1,则点16.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足C的轨迹方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.18.(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元..(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.19.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值20.(12分)如图,在直三棱柱中,,点分别为和的中点.(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说.明理由.的余弦值.(Ⅱ)求二面角21.(12分)已知,(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.22.(10分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.(1)为“﹣数列”中的任意三项,则使得的取法有多少种?(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个...